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The ability to carry out instrumental activities of daily living, such as paying bills, remembering appointments and shop-

ping alone decreases with age, yet there are remarkable individual differences in the rate of decline among older adults.

Understanding variables associated with a decline in instrumental activities of daily living is critical to providing appro-

priate intervention to prolong independence. Prior research suggests that cognitive measures, neuroimaging and fluid-

based biomarkers predict functional decline. However, a priori selection of variables can lead to the over-valuation of

certain variables and exclusion of others that may be predictive. In this study, we used machine learning techniques to se-

lect a wide range of baseline variables that best predicted functional decline in two years in individuals from the

Alzheimer’s Disease Neuroimaging Initiative dataset. The sample included 398 individuals characterized as cognitively

normal or mild cognitive impairment. Support vector machine classification algorithms were used to identify the most pre-

dictive modality from five different data modality types (demographics, structural MRI, fluorodeoxyglucose-PET, neuro-

cognitive and genetic/fluid-based biomarkers). In addition, variable selection identified individual variables across all

modalities that best predicted functional decline in a testing sample. Of the five modalities examined, neurocognitive

measures demonstrated the best accuracy in predicting functional decline (accuracy ¼ 74.2%; area under the curve ¼
0.77), followed by fluorodeoxyglucose-PET (accuracy ¼ 70.8%; area under the curve ¼ 0.66). The individual variables

with the greatest discriminatory ability for predicting functional decline included partner report of language in the

Everyday Cognition questionnaire, the ADAS13, and activity of the left angular gyrus using fluorodeoxyglucose-PET.

These three variables collectively explained 32% of the total variance in functional decline. Taken together, the machine

learning model identified novel biomarkers that may be involved in the processing, retrieval, and conceptual integration

of semantic information and which predict functional decline two years after assessment. These findings may be used to

explore the clinical utility of the Everyday Cognition as a non-invasive, cost and time effective tool to predict future func-

tional decline.
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Introduction
The ability to carry out instrumental activities of daily

living, such as paying bills, remembering appointments

and shopping alone, decreases with age. An estimated

26% of community-dwelling older adults between 70 and

79 experience functional impairment in at least one do-

main (e.g. completing chores, managing money, preparing

meals), increasing to 35% of adults between 80 and 89.1

Declines in IADLs are associated with Alzheimer’s dis-

ease,2 lower quality of life,3 depression4 and diminished

physical functioning.5 However, IADL ability varies wide-

ly among older adults; whereas some show reduced func-

tional independence, others demonstrate preserved

functional independence. As the population continues to

age and life expectancy increases,6 understanding varia-

bles associated with decline and preserved ability to carry

out IADLs will be critical to provide appropriate and

timely intervention.

A small set of studies have examined neurobiological

and cognitive factors associated with longitudinal func-

tional decline across the spectrum of normal and patho-

logical ageing. One study demonstrated that CSF markers

of neurodegenerative pathology – i.e. tau, phosphory-

lated-tau (p-tau) and amyloid beta (Ab)-predicted func-

tional decline at 36 months in cognitively normal subjects

and individuals with mild cognitive impairment (MCI),7

while another study found that whole-brain atrophy

based on structural MRI and Apolipoprotein E (APOE)

e4 status predicted functional decline in MCI.8

Fluorodeoxyglucose-PET and cognitive performance have

also been shown to be associated with functional de-

cline.9–12 Taken together, the emerging literature has out-

lined a variety of neurobiological and cognitive factors

that are associated with subsequent functional decline.

However, some important limitations characterize previ-

ous work. First, variables included in prediction analyses

were selected a priori in these studies, potentially leading

to overvaluation of some variables and oversight of

others that may explain greater variance in functional de-

cline. Second, prior work has not included testing/valid-

ation samples or employed permutation testing, limiting

generalizability of findings. Finally, studies examining

genetic associations of functional decline have conducted

candidate gene analyses, rather than considering polygen-

ic effects, which have been shown to add predictive value

to understanding many complex traits and diseases.13

To address these limitations, we implemented machine

learning techniques to identify variables at a baseline visit

that were associated with a functional decline within

24 months later. This data-driven approach is designed to

give equal consideration to all available variables and

allows the relationships between variables to determine

the final model. Such approaches prevent biased

Graphical Abstract

2 | BRAIN COMMUNICATIONS 2021: Page 2 of 14 K. E. Valerio et al.



experimenter expectancies from influencing results and

are ideal for studying a facet as highly dimensional as

human ageing. Moreover, this technique can help identify

risk and resilience factors from a large set of variables to

allow a more targeted approach to treatment or preven-

tion, providing a more individualized approach to under-

standing functional decline.14 Although prior research has

used machine learning to diagnose and predict conversion

to Alzheimer’s disease as well as Alzheimer’s disease

pathology,15–19 this approach has yet to be implemented

to examine functional decline. Functional decline is con-

siderably more prevalent among older adults (�26% of

individuals between 70 and 79)1 compared to Alzheimer’s

disease (9.7% of individuals over the age of 70),20 high-

lighting the need to examine variables predictive of func-

tional decline.

In the current analyses, we implemented support vector

machine (SVM) algorithms to construct models of func-

tional decline at 24 months following baseline assessment

using multiple data modalities (demographics, MRI,

FDG-PET, neurocognitive and genetic/fluid-based bio-

markers) available in the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database. ADNI is a

multicenter study that includes a sample of deeply charac-

terized older adults. By grouping variables into modalities

based on collection method, we sought to examine the

extent to which less invasive methods of data collection

(e.g. neurocognitive tests) have discriminative power equal

to or better than more invasive markers of functional de-

cline (e.g. CSF markers). In addition, we evaluated varia-

bles across modalities to identify the individual variables

that were most associated with functional decline.

Included in these variables was a polygenic risk score for

Alzheimer’s disease, which takes into account the effects

of many genes. Finally, we took the selected variables

and validated their effect in a separate sample to provide

evidence of the generalizability of their predictive ability.

The goals of this study were 2-fold: (i) Use machine

learning techniques to identify data modalities and varia-

bles most predictive of functional decline in an unbiased

and data-driven way; and (ii) Test those variables in an

independent sample and examine their influence on future

decline using multiple regression models.

Materials and methods

Subjects

Data used for this manuscript were obtained from the

ADNI database (adni.loni.usc.edu). ADNI is a large-scale

longitudinal study that began in 2004 as a public–private

partnership led by Principal Investigator Michael W.

Weiner, MD. Participants were recruited to examine ser-

ial MRI, PET, biomarkers, clinical assessment and neuro-

psychological assessment to measure the progression of

MCI and Alzheimer’s disease. Additional information can

be found at adni.loni.usc.edu. Our analyses included 398

adults with preserved functional performance, as indi-

cated by a diagnosis of normal cognition or MCI, and

who completed the Functional Activity Questionnaire

(FAQ) at a baseline and 24-month visit. Participants

included in analyses were missing no more than 5% of

all analysed variables. Remaining missing data were

imputed via simple random sampling (<1% of total

data).

Study procedures were approved by site-specific

Institutional Review Boards and all participants and/or

authorized representatives provided written informed con-

sent consistent with the Declaration of Helsinki. For

more information about the diagnostic criteria used in

ADNI, see the General Procedures Manual at

adni.loni.usc.edu.

Data types

Outcome variable

The FAQ is a questionnaire that was designed to monitor

functional changes in older adults and is considered the

gold standard for assessing IADLs in an ageing

population.21 It assesses ten items on a scale from 0 to 3,

with higher scores indicating greater levels of impairment.

Total scores range from 0 to 30. It has demonstrated

high reliability and sensitivity (85%) in research and clin-

ical settings22 and is useful for differentiating between

cognitively normal and dementia patients,22 MCI and

Alzheimer’s disease,23 and MCI and normal cognition.3

In order to capture subtle changes in functioning, individ-

uals who had a difference score greater than or equal to

one point between their baseline and 24-month assess-

ment were considered to have a decrease in functioning.

This corresponds with any decrease in ability to carry

out any of the ten items assessed, and previous research

has shown that any dependence on others for any IADL

is significantly associated with increased risk of develop-

ing Alzheimer’s disease as early as five years prior to

diagnosis.24 All other individuals were characterized as

having either stable or improving functioning.

Predictor variables

A total of 508 variables were included in analyses, organ-

ized into five data modalities (demographics, MRI, FDG-

PET, neurocognitive and genetic/fluid markers). These

variables were also assessed for their individual contribu-

tions to functional decline. In total, there were 26 demo-

graphic variables, 341 MRI variables, 30 FDG-PET

variables, 71 neurocognitive variables and 40 genetic/

fluid-based biomarker variables.

Demographics

Twenty-six demographic variables included age, sex, edu-

cation, race, ethnicity, marital status, body mass index,

baseline diagnosis (CN or MCI) and medical history.

Medical history diagnoses were classified into one of 18
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categories of illnesses – psychiatric, neurologic, ears/nose/

throat (ENT), cardiac, respiratory, hepatic, dermatologic,

musculoskeletal, endocrine/metabolic, gastrointestinal,

blood, renal, allergic, alcohol-related, drug-related, smok-

ing related, malignant or surgical.

MRI

T1-weighted images were acquired on ADNI-approved

3 T scanners and processed cross-sectionally using the

2010 Desikan-Killiany atlas with FreeSurfer image ana-

lysis suite, version 5.1. For more information, see

Supplementary material. This included 69 cortical volume

measurements (68 unilateral volumes from the left and

right hemispheres and intracranial volume), 16 hippocam-

pal subfield volume measurements, 50 subcortical volume

measurements, 70 surface area measurements and 136

thickness measurements. All volume measurements were

corrected for intracranial volume.25

Fluorodeoxyglucose-PET

For more information on data collection and processing,

see Supplementary material. Metrics of regions of interest

(ROIs) available through ADNI were previously deter-

mined from a meta-analysis that identified regions which

significantly differed between MCI and Alzheimer’s dis-

ease and predicted cognitive decline.11 Metrics of standar-

dized uptake value in five regions were included: the

right temporal gyrus, left temporal gyrus, right angular

gyrus, left angular gyrus and posterior cingulate. Metrics

of each region included the mean, median, mode, max-

imum, minimum and standard deviation SUV of each

ROI, for a total of 30 variables. For these variables, SUV

refers to the ratio of the concentration of radioactive glu-

cose analog in an ROI to the concentration in the rest of

the body, corrected for the weight of the patient. It is a

proxy for glucose metabolism in the brain, with larger

SUVs suggesting increased glucose uptake and increased

brain activity.

Neurocognitive measures

General cognition, executive function, learning and mem-

ory, language, and processing speed were assessed with

13 standardized neuropsychological tests. Seventy-one

neurocognitive variables were derived from these 13 tests;

this included subtests when available in the

NEUROBAT.csv file from ADNI. Supplementary Table 1

lists the specific tests used for each domain.

Biological samples

A single polygenic hazard score for Alzheimer’s disease

was calculated using 31 single nucleotide polymorphisms

and two APOE variants.26 CSF was collected via lumbar

puncture and analysed for three variables: Ab1-42, tau

and p-tau. Blood plasma and urine serum were collected

from participants and underwent standard clinical labora-

tory tests at the University of Pennsylvania Biomarker

Core.27 Thirty-six variables from tests on blood plasma

and urine serum were included in these analyses. For

more information, see Supplementary material.

Analytic methods

Training and testing sample

Analyses were run in R (3.6.1)28 using the ‘caret’ pack-

age.29 The sample was partitioned into two groups, a

training sample (70% of the sample) and a testing sample

(30% of the sample), using the createDataPartition func-

tion. This function assigned participants to one of two

groups, while ensuring that both groups had equal pro-

portions of individuals who were characterized as declin-

ing functionally. Training and testing samples were

compared using Mann–Whitney U-tests for continuous

variables and Fisher’s exact test for categorical variables.

Nonparametric tests were used given that the properties

required of parametric tests were not satisfied.

Figure 1 shows the sequence of variable selection and

variable evaluation. Briefly, the training sample was used

to identify variables with the most predictive ability or

highest variable importance as well as model tuning. The

testing sample was used to evaluate model performance

and generate receiver operating characteristic (ROC)

curves, as well as the variance in functional decline

explained by the selected predictor variables.

Data modality analysis

Variable selection

To determine which of the five data modalities (i.e.

demographics, MRI, FDG-PET, neurocognitive and genet-

ic/fluid markers) best predicted functional decline, the top

15 variables from each modality were first identified by

ranking their importance to the model’s prediction.

Variable importance scores were calculated using the

varImp function in the ‘caret’ package. For an SVM algo-

rithm, this function works by considering individually

each variable in a model and defining a line that most

accurately separates the two classes, using SVM. See

below for more information about how SVM defines a

line or hyperplane. This classification boundary is then

systematically varied to adjust the ratio of true positives

to false positives. The resulting ratios are plotted to gen-

erate an ROC curve representing the trade-off between

sensitivity and specificity for the variable. The area under

the curve (AUC) thus summarizes the variable’s suscepti-

bility to noise, with higher values suggesting greater dis-

crimination ability. AUC was therefore used to determine

variables with the greatest predictive ability. For more in-

formation about ROC curves and classification

boundaries.30

Support vector machine

SVM classification algorithms were used to find the opti-

mal solution to separate data into two different classes or

categories. Briefly, SVMs function by plotting each input
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point in high-dimensional space and defining the optimal

hyperplane that best separates the data into classes. The

hyperplane is defined by finding certain data points at or

near class boundaries (support vectors) and maximizing

the distance (margin) between each support vector and

the line separating them (the hyperplane). These analyses

employed a linear kernel or a linear hyperplane to predict

functional decline as a binary outcome 24 months after a

baseline assessment. Variables identified during the vari-

able selection step were used as predictors.

SVM classifiers were tuned for the optimum cost par-

ameter prior to model evaluation in the testing sample.

The cost parameter, c, is a regularization parameter, or

the penalty for misclassification. The magnitude of c

affects the size of the margin-hyperplane and can be

tuned for the optimal trade-off between training errors

and testing errors to optimize the model for generalizabil-

ity. For these analyses, we tested several values of c (2�8,

2�4, 2�2, 1, 2, 16) to define the best model. The tuning

process underwent cross-validation via repeated k-fold

cross-validation.

For these analyses, k was set to 10 and 50 repeats

were performed. This method of cross-validation works

by randomly partitioning the sample into 10 (k) equal-

sized groups. The first nine groups are used to train a

model with a given value of a tuning parameter. The

tenth group is then used to evaluate this model. A new

model is then trained on nine of the groups while a dif-

ferent group is used for testing. This process continues

until each group is used for model evaluation exactly

Figure 1 Flowchart illustrating process of variable selection and data analysis. Three hundred ninety-eight eligible participants

were identified in the first step and missing data were imputed. In the second step, the data were split into the training sample and testing

sample. Two parallel processes were run in the training sample. In the first process, shown in orange, data were split into each of the five

modalities. Within each modality, the top 15 most predictive variables were identified by their individual variable importance. These selected

variables were then entered as predictors into individual SVM models, one for each modality. Within these individual SVM models, the models

were trained for the optimal cost parameter. This final model was then tested using the testing sample. In the testing sample, ROC curves

were generated for each modality. In the second process in the training sample, shown in blue, all variables from all modalities were included

together. The top 15 most predictive variables were identified by the individual variable importance. These selected variables were then

entered as predictors into a linear regression in the testing sample. Also in the testing sample, post hoc hierarchical regression analyses were

conducted to better understand the relationship between significant predictors. FAQ, Functional Activities Questionnaire; ROC, receiver

operating characteristics; SVM, support vector machine.
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once. The entire process is repeated 50 times for each

value of the tuning parameter. This information was then

used to select the model tuning parameters which were

used for the final model that was evaluated in the testing

sample.

Additionally, models were also run using the Synthetic

Minority Oversampling Technique (SMOTE)31 to account

for imbalance in the dataset. For more information, see

Supplementary material and Supplementary Table 2.

Model evaluation

ROC curves were generated in the testing sample after

variable selection and tuning in the training sample.

Predictive ability of the models was assessed using AUC

rather than accuracy because AUC has been shown to be

a more consistent measure of evaluating models32 ; an

AUC of 0.5 indicates no discrimination, 0.5 to 0.6 indi-

cates poor discrimination, 0.7 to 0.8 indicates acceptable

discrimination, 0.8 to 0.9 indicates excellent discrimin-

ation, and greater than 0.9 indicates outstanding

discrimination.

Individual variable analysis

Variable selection

To determine which individual variables best predicted

functional decline, the 15 variables (out of the 508

extracted from ADNI) with the highest variable import-

ance scores were selected and retained for additional stat-

istical analyses. This univariate variable selection method

allowed us to significantly narrow the number of varia-

bles, from several hundred to 15. Doing so was concep-

tually suited for achieving the aims of this paper and

permitted the interpretation of those variables through a

clinical lens. As with data modality variable selection,

variable importance scores were calculated by defining a

line that most accurately separated the two classes; ROC

curves were generated and AUCs were calculated. Doing

so allowed the identification of the most predictive varia-

bles independent of data modality.

Regression analysis

Regression analysis was conducted using DFAQ as a

semi-continuous outcome variable and the 15 variables

with the highest individual AUC included as predictors.

DFAQ was calculated as the difference between the base-

line FAQ score and 24-month FAQ score. Higher scores

indicated worse functioning at the follow-up visit relative

to the baseline visit. To circumvent issues of collinearity

and minimize variance inflation factor values, two varia-

bles were removed prior to regression analyses due to

high correlations with other variables (maximum SUV of

left angular gyrus, and EcogSP-Total). Because the mean

SUV in the left angular gyrus encompasses the maximum

SUV as well as additional information about activity in

this region, the maximum SUV in the left angular gyrus

was removed. The EcogSP-Total score is calculated as the

average of all subtest scores. In order to include the most

information, the EcogSP-Total was removed. The left sub-

iculum volume and left CA2/3 volume were also highly

correlated. Rather than choose one to remove, these two

values were added together for the regression analysis.

Supplementary Figure 1 reports the correlations between

each of the 15 variables. For all statistical analyses, sig-

nificance threshold was set at P< 0.05.

Data availability

Data used for these analyses are available by request at

adni.loni.usc.edu.

Results

Demographic characteristics

Table 1 reports demographic characteristics of the partici-

pant sample. In total, 398 participants (53.8% male) be-

tween the ages of 55 and 90 (mean age ¼ 71.4; SD ¼
6.9) were included in these analyses. These participants

were randomly partitioned into a training sample (70%;

N¼ 278) and a testing sample (30%; N¼ 120). The two

Table 1 Demographic information and comparisons between the testing and testing sample

Variable All

Mean (SD)

Training

Mean (SD)

Testing

Mean (SD)

P-value

N 398 278 120

Age 71.4 (6.9) 71.3 (6.7) 71.5 (7.4) 0.77

Males, N (%) 214 (53.8) 150 (54.0) 64 (53.3) 0.91

Education 16.5 (2.5) 16.5 (2.5) 16.4 (2.5) 0.74

Diagnosis, N (%) 0.94

Cognitively normal 128 (32.1) 91 (32.7) 37 (30.8)

MCI 270 (67.8) 187 (67.3) 83 (69.2)

Baseline FAQa 1.9 (3.4) 1.8 (3.3) 2.1 (3.6) 0.30

Declining functioning, N (%) 133 (33.4) 93 (33.5) 40 (33.3) 1.00

DFAQ 1.4 (4.1) 1.6 (4.4) 1.1 (3.8) 0.54

aScore between 0 and 30, higher score indicates declining functioning.

FAQ, Functional Activities Questionnaire; MCI, mild cognitive impairment; SD, standard deviation.
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groups did not differ significantly on age (P¼ 0.77), sex

(P¼ 0.91), education (P¼ 0.74), baseline FAQ score

(P¼ 0.30), DFAQ score (P¼ 0.54) or proportion of par-

ticipants with declining functioning (P¼ 1.00).

Most predictive data modality

Table 2 reports the variables with greatest AUC that

were selected from each modality; Table 3 and Fig. 2 re-

port model performance and confidence intervals of these

variables in the testing sample. AUC ranged from poor

(0.62) to acceptable (0.77). The best single-modality ac-

curacy was achieved with neurocognitive measurements

(Fig. 2A). This model demonstrated acceptable AUC

(0.77, 95% CI ¼ 0.68–0.86) and accuracy (74.2%). MRI

metrics, FDG-PET metrics, genetic/fluid-based biomarkers

and demographic information all demonstrated poor

AUC, 0.62, 0.66, 0.63 and 0.62, respectively (Fig. 2D, B,

C and E).

Most predictive variable

The 15 variables with the highest individual AUCs from

all 508 variables, listed alphabetically, were as follows:

Alzheimer’s Disease Assessment Scale (ADAS13),

Category fluency-animals, Clinical Dementia Rating-sum

of boxes, Everyday Cognition-Study Partner (EcogSP)-

Divided Attention, EcogSP-Language, EcogSP-Memory,

EcogSP-Total, EcogSP-Visuospatial, left CA2/CA3 volume,

left subiculum volume, Logical Delayed Memory, mean

SUV of left angular gyrus, maximum SUV of left angular

gyrus, Rey Auditory Verbal Learning Test 30-minute

delay, right hippocampal volume and the total Montreal

Cognitive Assessment score. These variables (with the ex-

ception of maximum SUV of the left angular gyrus and

EcogSP-Total; see above) were then entered into a mul-

tiple regression model in the testing sample to predict

DFAQ as a semi-continuous variable. Basic demographic

variables were not added as covariates because they were

not identified as significant predictors during variable

selection.

Because the models demonstrated heteroskedasticity, a

weighting parameter was used such that the absolute

value of the residuals was regressed against each predict-

or. This improved heteroskedasticity. Furthermore, all

models described met assumptions of a linear regression:

the mean of the residual values was approximately zero;

there was no autocorrelation of residuals; predictors and

residuals showed no significant correlations; the predic-

tors all showed positive variance; there was no multicolli-

nearity present; and the residual values were

approximately normally distributed. Additionally, because

Table 2 Top ranked variables of each data modality as measured via individual AUC

Rank Demographicsa MRIa FDG-PETa Neurocognitiveb Biomarkersa

1 Diagnosis (MCI or CN) R hippocampus volume Maximum L angular

gyrus

CDR-sum of boxes Amyloid beta

2 Psychiatric diagnosis L CA2/3 volume Mean L angular gyrus EcogSP-Total Albumin

3 Dermatological

diagnosis

L subiculum volume Median L angular gyrus Logical memory delayed Tau

4 Gastrointestinal

diagnosis

L CA4/DG volume Maximum BL cingulum

post

EcogSP-Memory p-tau

5 Malignancy R CA2/3 volume Max R angular gyrus EcogSP-Divided Attention PHS

6 Musculoskeletal

diagnosis

R CA4/DG volume Mean R angular gyrus ADAS13 Total protein

7 Cardiac diagnosis L hippocampus volume Median BL cingulum

post

MoCA Percent eosinophils

8 Age R subiculum volume Mode R angular gyrus EcogSP-Language Neutrophils

9 Prior surgery L entorhinal cortical

thickness

Median R angular gyrus RAVLT 30-min delay Percent neutrophils

10 Education L entorhinal cortical

volume

Minimum R angular

gyrus

Category fluency-animals Serum glucose

11 Endocrine/metabolic

diagnosis

R CA1 volume Maximum L temporal

gyrus

RAVLT % forgetting Eosinophils

12 Smoking status R entorhinal cortical

thickness

Mean BL cingulum post EcogSP-Visuospatial Percent lymphocytes

13 Hematopoietic-

Lymphatic diagnosis

R hippocampal tail

volume

Median L temporal

gyrus

RAVLT Trial 3 Basophils

14 Neurological diagnosis

(Not AD)

L CA1 volume Mean L temporal gyrus RAVLT immediate Gamma-glutamyl

Transferase

15 Gender L Presubiculum volume Mean R temporal gyrus RAVLT Trial 5 Percent monocytes

aVariables showed poor predictive value, see Table 3 for more information.
bVariables showed acceptable predictive value, see Table 3 for more information.

AD, Alzheimer’s disease; ADAS, Alzheimer’s Disease Assessment Scale; BMI, body mass index; CDR, Clinical Dementia Rating; CN, Cognitively normal; DG, Dentate gyrus; EcogSP,

Everyday Cognition-Study Partner; ENT, Ears/Nose/Throat; FDG, fluorodeoxyglucose; L, left; MCI, mild cognitive impairment; MoCA, Montreal Cognitive Assessment; PHS, poly-

genic hazard score; p-tau, phosphorylated tau; R, right; RAVLT, Rey Auditory Verbal Learning Test.
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Table 3 Model performance

Model Sensitivity Specificity Accuracy (%) AUC AUC

95% CI

C

Neurocognitive 0.48 0.88 74.2 0.77 0.68–0.86 2–8

FDG-PET 0.33 0.90 70.8 0.66 0.56–0.77 2–2

Genetic/fluid-based

biomarkers

0.23 0.95 70.8 0.63 0.51–0.74 2–4

MRI 0.25 0.95 71.7 0.62 0.51–0.73 20

Demographics 0.00 1.00 66.7 0.62 0.51–0.72 2–8

AUC, area under the curve; FDG, fluorodeoxyglucose.

Figure 2 Classifier results. (A) Neurocognitive measures. (B) FDG-PET measures. (C) Genetics/fluid-based biomarkers. (D) MRI measures.

(E) Demographic information. FDG, fluorodeoxyglucose.
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weighting parameters tend to lead to inflated R2 values,

all reported R2 values have been adjusted as per Willet

and Singer.33 This adjustment calculates R2 based on the

difference between the model estimates and the original

values and has been shown to be a less biased goodness

of fit. Lastly, the final model included 12 predictors for

120 participants, which is in line with the recommenda-

tion of 1:10 predictor to participant ration for regression

analysis.34,35

The overall regression model was significant [F(12,107)

¼ 16.69, P< 2.2 � 10�16] and explained 33.1% of the

variance in functional change (Table 4). In this model,

only EcogSP-Language, mean left angular gyrus activity,

and ADAS13 were significant predictors. Those who

scored poorly on EcogSP-Language showed greater de-

cline in functioning at the 24-month follow-up [F(1,118)

¼ 71.81, P¼ 7.8 � 10�4; Fig. 3A]. The EcogSP-

Language subtest explained 21.1% of the variance in

functional change. Those with lower mean activity in the

left angular gyrus also showed greater decline at the 24-

month follow-up [F(1,118) ¼ 58.66, P¼ 5.8 � 10�12;

Fig. 3B]. Left angular gyrus activity explained 14.5% of

the variance in functional change. Those who scored

poorly on the ADAS13 also showed greater decline in

functioning at the 24-month follow-up [F(1,118) ¼ 1237,

P< 2.2 � 10�16; Fig. 3C]. The ADAS13 explained

21.3% of the variance in functional change. After

accounting for shared variance, these three variables col-

lectively explained 31.7% of the total variance in func-

tional decline [F(2,116) ¼ 74.56, P< 2.2 � 10�16].

Discussion
The objective of this study was to use machine learning

to reliably predict functional decline within 24 months in

cognitively healthy older adults and those with MCI. We

first examined clinically relevant modalities (i.e. demo-

graphics, MRI, FDG-PET, neurocognitive measures and

genetic/fluid-based biomarkers) that predicted functional

decline, and then examined individual variables across all

modalities. There were two main findings. First, neuro-

cognitive measures demonstrated the best accuracy in pre-

dicting functional decline compared to other data

modalities (accuracy ¼ 74.2%; AUC ¼ 0.77), followed

by FDG-PET (accuracy ¼ 70.8%; AUC ¼ 0.66). Second,

when considering the top 15 variables selected by the

training sample, only scores on the EcogSP-Language

subtest, ADAS13 and mean activity in the left angular

gyrus (measured by FDG-PET) explained a significant

amount of variance in functional decline in the testing

sample.

Results from the SVM algorithms demonstrated that

neurocognitive measures predict IADL decline in two

years with acceptable discriminability and outperform

other measures including neuroimaging, CSF, demograph-

ics, and genetics. These results suggest that neurocognitive

tests can successfully predict functional decline better

than more invasive and costly assessments. Moreover,

when examining individual variables’ discriminatory abil-

ity across all modalities, 11 of the top 15 predictive vari-

ables were neurocognitive. Of these neurocognitive

measures, the EcogSP-Language subtest and the ADAS13

demonstrated the strongest association with functional de-

cline in the testing sample. The EcogSP-Language subtest

specifically explained 21.1% of the variance. This is con-

sistent with similar work that has identified the Ecog as

a predictor of cognitive decline and conversion to MCI

or Alzheimer’s disease.36 The Ecog is an informant-report

questionnaire designed to assess subtle changes in real-

world functioning in an older population; it can also be

administered as a self-report measure. It has shown high

test-retest reliability (r¼ 0.82), convergent validity with

Table 4 Results of multiple regression

Variable Coefficient SE 95% CI VIF P-value

ADAS13 0.15 0.03 0.09–0.21 3.13 8.2 � 10�6*

Category fluency-animals �0.04 0.03 �0.10 to 0.01 1.56 0.18

CDR-Sum of boxes �0.10 0.14 �0.38 to 0.19 1.64 0.50

EcogSP-Divided Attention �0.46 0.26 �0.98 to 0.05 2.85 0.08

EcogSP-Language 1.55 0.31 0.93–2.17 3.00 2.6 � 10�6*

EcogSP-Memory 0.18 0.30 �0.41 to 0.77 3.83 0.55

Mean Left Angular Gyrus �3.05 0.73 �4.49 to 1.60 1.34 6.28 � 10�5*

Left CA2/3þ subiculum 0.00 0.00 �0.001 to 0.001 4.05 0.63

Logical Memory Delayed 0.03 0.03 �0.03 to 0.09 2.09 0.30

MoCA 0.02 0.06 �0.09 to 0.14 2.87 0.68

Right Hippocampal Volume 0.00 0.00 �0.001 to 0.00 4.30 0.55

RAVLT 30 min Delay 0.04 0.03 �0.02 to 0.10 1.98 0.18

Overall Model 0.331a 16.69b <2.2 � 10�16*

aModel R2.
bF-statistic.

* indicates P< 0.05.

ADAS13, Alzheimer’s Disease Assessment Schedule; CDR, Clinical Dementia Rating; EcogSP, Everyday Cognition-Study Partner; MoCA, Montreal Cognitive Assessment; RAVLT,

Rey Auditory Verbal Learning Test; SE, standard error; VIF, variance inflation factor
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widely used neuropsychological and informant assess-

ments, and external validity in discriminating normal,

MCI, and dementia groups.37 The EcogSP-Language subt-

est includes nine items that assess language and semantic

memory.37 However, it is likely that the EcogSP-

Language subtest assesses more complex cognitive

abilities than simple language. For example, understand-

ing and communicating in a conversation requires under-

standing grammatical complexities of language (semantic

memory), following and remembering the sequence of

remarks made by various speakers (working memory and

attention), and retrieving specific event memories to con-

vey thoughts (episodic memory), which decline with

age.38–40 Traditional language fluency and verbal know-

ledge tests such as the Category Fluency Test and the

American National Adult Reading Test (ANART) were

not selected as significant predictors of functional decline

in this study, suggesting that EcogSP-Language subtest

may be probing more complex information synthesis and

processing abilities that underlie functional ability. The

Ecog-Language subtest as completed by the study partici-

pant also was not selected as a significant predictor. A

key feature of this assessment in predicting functional de-

cline may be in the study partner’s assessment of such

skills, as study participants may be anosognosic. This is

supported by other research that suggests that informant-

reported ratings of functional deficits better predict de-

cline and conversion to dementia.41

The ADAS13 also demonstrated a significant (P< 2.2

� 10�16) association with functional decline and

explained 21.3% of the variance in decline. The ADAS13

is a cognitive test (scores between 0 and 85 with higher

scores indicating worse cognition) that assesses patients

in various domains including learning and memory, lan-

guage production and comprehension, and constructional

and ideational praxis. It is derived from the ADAS11

which was designed to help diagnose mild and moderate

Alzheimer’s disease,42 and incorporates two additional

items (cancellation and delayed free recall) that have been

shown to increase the sensitivity of the assessment in dif-

ferentiating between CN, MCI, and AD.43,44 While this

newer version of the ADAS has not yet been well-studied,

it has been shown to be predictive of conversion from

MCI to Alzheimer’s disease,45 help determine Ab positiv-

ity46 and identify early stages of Alzheimer’s disease.47

Because the ADAS13 is made of multiple domains, it is

possible that the results here are being driven by one or

several specific areas of cognition. One study showed

that five domains were particularly sensitive to cognitive

change over time—commands, remember instructions,

comprehension, word finding and spoken language.48

Our results suggest that the ADAS13 can be a good

measure to understand functional decline and the relevant

domains may be similar to the construct uncovered by

our results. Future work may help determine the import-

ance and relevance of this assessment and potential

construct.

Following neurocognitive measures, FDG-PET demon-

strated the next best discriminability (AUC ¼ 0.66).

FDG-PET has long been used to assess cognitive decline

and dementia by serving as a proxy for brain activity. A

previous study demonstrated the importance of FDG-PET

in predicting functional decline in individuals with

Figure 3 Relationship between significant predictors and DFAQ.

(A) Values on the x-axis represent study partner report for

language ability on the Everyday Cognition assessment, with higher

scores indicating worse language ability. Scores are calculated as the

average of the 9 items on the subtest. Values on the y-axis

represent DFAQ, calculated as the difference between baseline

FAQ score and 24-month FAQ score, with higher scores indicating

worse functioning as the 24-month visit. Worse partner-reported

language ability was associated with greater decline in functioning

24 months after baseline assessment. (B) Values on the x-axis

represent ADAS13 scores, with higher scores indicating worse

performance. Values on the y-axis represent DFAQ, calculated as

the difference between baseline FAQ score and 24-month FAQ

score, with higher scores indicating worse functioning at the 24-

month visit. Worse ADAS13 scores were associated with greater

decline in functioning 24 months after baseline assessment. (C)

Values on the x-axis represent mean SUV of the left angular gyrus,

with lower scores indicating lower brain activity. Values on the y-

axis represent DFAQ, calculated as the difference between baseline

FAQ score and 24-month FAQ score, with higher scores indicating

worse functioning at the 24-month visit. Lower average glucose

metabolism in the left angular gyrus was associated with greater

decline in functioning 24 months after baseline assessment. EcogSP,

Everyday Cognition-Study Partner; FAQ, Functional Activities

Questionnaire; SUV, standardized uptake value.
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MCI.11 While Landau and colleagues used a composite

measure of the five ROIs also used in this study, the

results here specifically identified the left angular gyrus as

a significant predictor of functional decline. Further vali-

dating the angular gyrus results, the left angular gyrus

was a significant predictor in a separate sample that had

not been used for variable selection. Regression analysis

indicated that activity in the left angular gyrus alone

explained 14.5% of the variance in degree of functional

change, which underscores the importance of considering

the left angular gyrus to develop a more comprehensive

understanding of functional decline throughout the ageing

process.

The angular gyrus resides in the posterior inferior par-

ietal lobe in Brodmann area 39 and is part of the parietal

association cortex.49,50 It serves as a hub linking large

scale neural networks, including the default mode net-

work, dorsal attention network, and visual and somato-

sensory networks, suggesting that this area is critically

involved in synthesizing heteromodal information.51 In a

review integrating a large body of primary research,

Seghier et al.50 conclude that ‘the [angular gyrus] resem-

bles a cross-modal integrative hub that gives sense and

meaning to an event within a contextualized environment,

based on prior expectations and knowledge, and towards

an intended action’ (p. 52). This observation comes from

studies supporting the angular gyrus’s role in semantic

associations,52 reading and comprehension,53 episodic

memory retrieval,54–56 verbal working memory57 and so-

cial cognition.58 The left angular gyrus may play a more

substantial role in semantic and conceptual knowledge

relative to the right angular gyrus.49 Moreover, degener-

ation specifically in the left angular gyrus has been asso-

ciated with cognitive decline in neurodegenerative

disease.59 It is plausible that the ability to carry out

IADLs, which depends on the nexus of conceptual know-

ledge and action sequences, critically relies on left angular

gyrus function. The results reported here are consistent

with the notion that disruptions in IADLs reflect lower

brain activation in this area. While a previous study has

demonstrated a cross-sectional link between angular gyrus

volume and functional ability,60 this study provides evi-

dence for the association between angular gyrus function

and future functional decline.

Of the variables identified in the training sample and

validated in the testing sample, processing, retrieval, and

conceptual integration of semantic information emerged

as a construct that may be critical for understanding risk

factors of future functional decline. This construct is indi-

cated by the EcogSP-Language and mean SUV in the left

angular gyrus. These two measures, one neurocognitive

and one neurometabolic, overlap in their purported in-

volvement in integration of conceptual knowledge and ac-

tion sequences towards a functional goal. The ADAS13

also incorporates semantic language processing items, and

future research should examine if these particular items,

such as those identified in Dowling et al.,48 may be driv-

ing this relationship.

Results from the SVM models also show that genetic/

fluid-based biomarkers and MRI metrics demonstrate

minimal predictive ability, with an AUC of 0.63 and

0.62, respectively. This provides some support for prior

research demonstrating their ability to predict functional

decline in adults with normal cognition and MCI.7,8

However, when the top 15 variables were validated in an

independent sample, no genetic/fluid-based biomarkers or

MRI metrics were selected, suggesting that while they

may demonstrate predictive ability, this predictive ability

may be outranked when other variables are considered.

This underscores the importance of considering a large

set of variables in a data-driven approach in order to

identify those that are most predictive compared to select-

ing variables a priori. While demographic information

demonstrated some predictive ability as measured by

AUC (0.62), it showed 0% sensitivity, suggesting such

variables have minimal utility for studying functional de-

cline over two years.

This study has several limitations. First, it is important

to consider potential biases in sample selection.

Participants included in ADNI are, on average, highly

educated and predominantly white. Socioeconomic status

has been shown to affect IADL functional status.1

Therefore, these results may not generalize to the larger

sociocultural context that is representative of individuals

within the United States. This study also only examines

the predictive ability of various data modalities over

24 months. It cannot be determined whether other data

modalities would show greater predictive ability at differ-

ent timepoints relative to functional decline. Furthermore,

these analyses only included data that were already proc-

essed through ADNI. Other modalities, such as functional

MRI, might improve model performance and predictive

power.

It is worth noting that sensitivity in this sample is low.

This pattern may be attributed to the multidetermined

nature of functional status and decline. Functional ability

may be impacted by a number of different factors,

including neurodegeneration, physical impairment and

medical illness-induced limitations. While we have tried

to include a number of diverse variables in the model, it

may not be feasible to capture their later effects with

baseline variables. For example, an unexpected stroke

could severely affect functional decline, but this may not

be indicated by any baseline health variable. Additionally,

slow physical decline due to illness such as arthritis may

impact certain IADL domains such as shopping alone or

travelling out of the neighbourhood, but this slow decline

may not be evident by baseline status; also, such an ill-

ness may not have impacted enough people in the model

to affect variable selection. Moreover, research has also

demonstrated that the greater the time difference between

assessment and prediction, the lower the sensitivity of the

model.18 Presently, the models developed would require
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additional information and further validation to improve

sensitivity before model deployment in a clinical setting.

Nonetheless, the patterns uncovered here shed important

light on variables, modalities, and constructs that contrib-

ute to our understanding of functional decline and can

help guide future research.

Conclusion
The machine learning approach applied here improves

upon previous work examining the ability of neuroimag-

ing, neurocognitive, demographic and genetic/fluid-based

biomarkers to predict functional decline two years after

baseline assessment. Neurocognitive measures showed the

highest accuracy and best discriminative ability, suggest-

ing that a set of inexpensive and non-invasive cognitive

assessments can be used to predict independent function-

ing in lieu of expensive and more invasive measures. Our

data-driven approach identified three novel measures

(EcogSP-Language, ADAS13 and mean left angular gyrus

activity) to predict functional decline, which have not

been reported when selecting variables a priori or when

looking at smaller subsets of variables. Two of these

markers (left angular gyrus activity and EcogSP-

Language) are purported to be involved in the processing,

retrieval, and conceptual integration of semantic informa-

tion, highlighting this construct in functional ability. The

third marker (ADAS13) is a global measure of cognition

that may be uniquely designed to target functional decline

and certain domains assessed with this tool may be

related to the above construct. Future work should con-

sider the utility of the EcogSP-Language, a simple inform-

ant report questionnaire, for predicting functional decline

in the absence of more invasive procedures such as PET

imaging or CSF markers or longer neuropsychological

assessments. This questionnaire is non-invasive, time-lim-

ited, and cost effective, and the results reported here sug-

gest it may be a useful prediction tool. Future work

should further consider the role of the angular gyrus in

functional decline in ageing and neurodegenerative

disease.

Supplementary material
Supplementary material is available at Brain

Communications online.

Acknowledgements
The authors graciously acknowledge the support and partici-

pation from all those involved in the Alzheimer’s Disease

Neuroimaging Initiative.

Funding
This work was supported by the National Institute on Aging

(NIA) of the National Institutes of Health (NIH)

R01AG058822 (awarded to J.P.H.), R21AG056921

(awarded to S.M.H.), and The Ohio State University

Discovery Themes Chronic Brain Injury Initiative (J.P.H. and

S.M.H.). The content is solely the responsibility of the

authors and does not necessarily represent the official views

of the NIH.

Data collection and sharing for this project was funded by

the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

(NIH Grant U01 AG024904) and DOD ADNI (Department

of Defense award number W81XWH-12-2-0012). ADNI is

funded by the NIA, the National Institute of Biomedical

Imaging and Bioengineering, and through generous contribu-

tions from the following: AbbVie, Alzheimer’s Association;

Alzheimer’s Drug Discovery Foundation; Araclon Biotech;

BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company;

CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals,

Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La

Roche Ltd and its affiliated company Genentech, Inc.;

Fujirebio; GE Healthcare; IXICO Ltd; Janssen Alzheimer

Immunotherapy Research & Development, LLC.; Johnson

& Johnson Pharmaceutical Research & Development LLC.;

Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale

Diagnostics, LLC.; NeuroRx Research; Neurotrack

Technologies; Novartis Pharmaceuticals Corporation; Pfizer

Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical

Company; and Transition Therapeutics. The Canadian

Institutes of Health Research is providing funds to support

ADNI clinical sites in Canada. Private sector contributions

are facilitated by the Foundation for the NIH (www.fnih.

org). The grantee organization is the Northern California

Institute for Research and Education, and the study is coor-

dinated by the Alzheimer’s Therapeutic Research Institute at

the University of Southern California. ADNI data are disse-

minated by the Laboratory for Neuro Imaging at the

University of Southern California.

Competing interests
The authors report no competing interests.

References
1. Seeman TE, Merkin SS, Crimmins EM, Karlamangla AS.

Disability trends among older Americans: National Health and

Nutrition Examination Surveys, 1988–1994 and 1999–2004. Am J

Public Health. 2010;100(1):100–107.
2. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis

of dementia due to Alzheimer’s disease: Recommendations from

the National Institute on Aging-Alzheimer’s Association work-

groups on diagnostic guidelines for Alzheimer’s disease.

Alzheimers Dement. 2011;7(3):263–269.

12 | BRAIN COMMUNICATIONS 2021: Page 12 of 14 K. E. Valerio et al.

https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcab140#supplementary-data
http://www.fnih.org
http://www.fnih.org


3. Teng E, Tassniyom K, Lu PH. Reduced quality-of-life ratings in

mild cognitive impairment: Analyses of subject and informant

responses. Am J Geriatr Psychiatry. 2012;20(12):1016–1025.
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